Trong bối cảnh chuyển dịch năng lượng đang diễn ra mạnh mẽ trên toàn cầu, điện gió nổi lên như một trong những trụ cột chính của ngành năng lượng tái tạo. Tuy nhiên, để đạt được sản lượng điện gió ổn định và hiệu quả, các nhà đầu tư và vận hành cần nhiều hơn là chỉ có tua-bin chất lượng. Họ cần một công thức thành công – nơi dữ liệu, công nghệ và vận hành đồng hành chặt chẽ. Và yếu tố đầu tiên trong công thức đó chính là: dữ liệu gió chính xác.

Khác với thủy điện hay nhiệt điện, điện gió phụ thuộc hoàn toàn vào thời tiết. Gió thay đổi liên tục theo mùa, thậm chí theo từng giờ, khiến việc dự báo và khai thác trở nên khó kiểm soát. Thực tế, nhiều dự án sau khi vận hành ghi nhận sản lượng thấp hơn kỳ vọng, kéo dài thời gian hoàn vốn và làm giảm hiệu quả đầu tư.
Nguyên nhân chủ yếu nằm ở giai đoạn đánh giá tiềm năng gió ban đầu. Nếu dữ liệu đo gió chưa đủ dài, không liên tục hoặc không phản ánh đúng tầng gió mà tua-bin hoạt động, mô hình tính toán sản lượng sẽ thiếu chính xác. Sai lệch ở bước này khiến cả dự án vận hành theo những kỳ vọng không thực tế.
>> Xem thêm: Năng Lượng Tái Tạo – Chìa Khóa Hiện Đại Hóa Hệ Thống Điện Quốc Gia
Để vận hành một hệ thống điện gió hiệu quả, cần có ba lớp dữ liệu cốt lõi. Chúng cần được thu thập và xử lý đồng bộ:
Dữ liệu gió theo thời gian thực: Cung cấp thông tin chính xác về tốc độ, hướng gió, mật độ không khí và mức độ nhiễu động tại độ cao hoạt động của tua-bin.
Dữ liệu mô hình khí tượng: Giúp dự đoán xu hướng biến động gió trong dài hạn, hỗ trợ lên kế hoạch vận hành tối ưu.
Dữ liệu địa hình – địa lý: Phản ánh cách dòng gió tương tác với địa hình, đặc biệt quan trọng ở khu vực đồi núi, ven biển hoặc gần hồ.
Khi ba lớp dữ liệu này được kết hợp và xử lý chính xác, nhà đầu tư có thể thiết kế công suất phù hợp. Nhờ vậy, chúng ta có thể tối ưu cấu hình tua-bin và bố trí lưới điện hiệu quả.
Thay vì dựng tháp đo gió truyền thống (tốn kém và bị giới hạn độ cao), hiện nay nhiều dự án đã chuyển sang sử dụng LiDAR gió (Light Detection and Ranging) – một công nghệ đo gió không tiếp xúc sử dụng xung laser.
Ưu điểm vượt trội:
Đo gió chính xác ở nhiều độ cao cùng lúc (từ 40m đến 300m), giúp tái hiện đầy đủ “chân dung” của dòng gió trong không gian ba chiều.
Lắp đặt linh hoạt trên mặt đất, trên phao nổi hoặc trực tiếp trên tua-bin – phù hợp cả cho điện gió trên bờ và ngoài khơi.
Đo dữ liệu trong thời gian dài (từ 12 đến 24 tháng), phục vụ cho giai đoạn khảo sát tiền đầu tư.
Tích hợp với hệ thống SCADA để phục vụ vận hành thông minh và bảo trì dự phòng.
Chính nhờ khả năng đo gió nhanh, rộng và liên tục, LiDAR giúp giảm thiểu rủi ro trong dự báo sản lượng và đưa ra những quyết định kỹ thuật – tài chính chuẩn xác hơn.

Một nhà máy điện gió không chỉ cần dữ liệu – mà cần biến dữ liệu thành hành động thông minh. Công thức thành công có thể tóm gọn thành 4 bước:
Giai đoạn này là nền tảng cho toàn bộ quá trình phát triển dự án điện gió. Việc đo gió bằng công nghệ LiDAR cần được thực hiện tối thiểu 12 tháng để:
Nắm bắt chu kỳ gió đầy đủ trong năm: Trong đó bao gồm mùa khô, mùa mưa, thời điểm gió mạnh nhất và gió yếu nhất.
Loại trừ biến động ngắn hạn: Điển hình như bão, nhiễu động khí quyển bất thường. Điều này nhằm để đảm bảo dữ liệu mang tính đại diện và ổn định.
LiDAR hoạt động bằng cách phát ra chùm tia laser lên trời. Sau đó, thiết bị này sẽ ghi nhận tín hiệu phản xạ từ các hạt khí dung trong không khí để tính toán tốc độ và hướng gió tại nhiều độ cao khác nhau (thường từ 40m – 300m). Cuối cùng dữ liệu từ LiDAR gió sẽ được lưu trữ. Chúng cần thông qua các bước xử lý và hiệu chỉnh trước khi đưa vào bước mô hình hóa.
Sau khi thu thập dữ liệu từ LiDAR, bước tiếp theo là mô phỏng sản lượng điện hàng năm (AEP). Nhóm kỹ thuật sẽ sử dụng các phần mềm chuyên dụng như WAsP, WindPro hoặc OpenWind.
Dữ liệu được nhập vào mô hình để tính toán sản lượng điện tiềm năng. Mô hình đó dựa trên phân bố gió, địa hình và đặc tính tua-bin.
Song song đó, quá trình mô phỏng cũng cho phép đánh giá các rủi ro kỹ thuật. Bao gồm hiệu ứng bóng gió, tổn thất do địa hình phức tạp, suy giảm hiệu suất theo thời gian và các tổn thất trong hệ thống.
Kết quả đầu ra là cơ sở định lượng giúp nhà đầu tư đánh giá tính khả thi và đưa ra quyết định điều chỉnh quy hoạch nếu cần thiết.
>> Xem thêm: Các Loại Năng Lượng Tái Tạo: Chính Sách Việt Nam Đang Dẫn Lối Tương Lai Xanh
Từ kết quả mô phỏng, nhóm kỹ thuật sẽ tiến hành tối ưu cấu hình dự án. Việc này nhằm đạt sản lượng điện cao nhất với chi phí thấp nhất. Quá trình tối ưu tập trung vào ba yếu tố chính:
Chiều cao cột tua-bin: Được lựa chọn theo tầng gió ổn định nhất (thường từ 80 đến 140 mét), nơi gió mạnh và ít nhiễu động. Với chiều cao này, hiệu suất phát điện sẽ tăng đáng kể.
Khoảng cách giữa các trụ: Cần đủ xa để hạn chế hiệu ứng bóng gió. Khoảng cách lý tưởng là 5–8 lần đường kính cánh quạt theo hướng gió chính, và 3–5 lần theo phương vuông góc.
Hướng bố trí tua-bin: Dựa trên hướng gió trội, địa hình và vị trí kết nối lưới. Bản đồ gió 3D từ dữ liệu LiDAR giúp xác định chính xác vùng gió mạnh. Nhờ vậy, chúng ta có thể dễ dàng tối ưu vị trí đặt tua-bin.
Khi ba yếu tố này được đồng bộ hóa, dự án sẽ đạt hiệu suất vận hành cao. Điều đó cũng giúp kéo dài tuổi thọ thiết bị. Ngoài ra, cấu hình hợp lý còn tác động trực tiếp đến tổng mức đầu tư, chi phí bảo trì và hiệu quả vận hành toàn trạm.
Bên cạnh duy trì tua-bin quay, mục tiêu cốt lõi của giai đoạn vận hành là tối ưu hiệu suất theo thời gian thực. Cụ thể hơn là giảm thời gian dừng máy và chủ động bảo trì. Để đạt được điều này, vận hành theo dữ liệu là yếu tố then chốt.
Sau khi đi vào hoạt động, thiết bị LiDAR vẫn tiếp tục đo gió theo phút hoặc giờ. Dữ liệu được truyền về hệ thống SCADA, giúp điều chỉnh tua-bin linh hoạt theo điều kiện thực tế. Khi gió yếu, hệ thống có thể ngắt một số tua-bin để giảm mài mòn. Ngược lại, khi gió vượt ngưỡng an toàn, tua-bin tự động dừng để bảo vệ thiết bị.

Hệ thống cũng phân tích dữ liệu gió kết hợp các chỉ số kỹ thuật như rung, nhiệt, âm thanh. Việc này giúp phát hiện sớm các dấu hiệu bất thường, từ đó giảm thiểu tổn thất sản lượng và chi phí sửa chữa đột xuất. Đồng thời, bảo trì được thực hiện thông minh hơn. Thay vì theo lịch cứng nhắc, hệ thống đánh giá tình trạng thiết bị và ưu tiên sửa chữa vào thời điểm gió yếu. Tất cả nhằm tối ưu chi phí và thời gian.
Nhờ vận hành dựa trên dữ liệu, nhà máy có thể duy trì hiệu suất ổn định. Việc này sẽ giúp kéo dài tuổi thọ thiết bị đến 20–25 năm và đảm bảo hiệu quả đầu tư bền vững.
Sản lượng điện gió ổn định từ đo gió chính xác, cấu hình tối ưu và vận hành thông minh. Với công nghệ LiDAR và phần mềm giám sát từ xa, LASI cung cấp giải pháp toàn diện giúp nhà máy theo dõi hiệu suất, cảnh báo sớm sự cố và tối ưu chi phí vận hành. LASI là đối tác tin cậy trong hành trình khai thác hiệu quả nguồn năng lượng gió. Liên hệ ngay để cùng xây dựng nền tảng dữ liệu vững chắc cho thành công lâu dài!
CÔNG TY CỔ PHẦN VẬT TƯ KHOA HỌC KỸ THUẬT LASI
Trụ sở: LASI Building, 345 Kim Mã, Ngọc Khánh, Ba Đình, Hà Nội
Văn phòng: 62 Nguyễn Khang, Yên Hòa, Cầu Giấy, Hà Nội
Hotline: 0988 279 911 – (84-24) 3771 2880
Email: Info@lasi.com.vn
Bài viết liên quan
Trong nhiều năm qua, Liên minh châu Âu (EU) luôn là một trong những thị trường xuất khẩu thủy sản lớn và có giá trị cao đối với Việt Nam. Tuy nhiên, để đưa sản phẩm thủy sản vào thị trường này, doanh nghiệp bắt buộc phải đáp ứng hàng loạt tiêu chuẩn khắt khe […]
Khí hậu ngày càng nghiêm trọng, nhu cầu chuyển dịch sang các nguồn năng lượng sạch và tái tạo đã trở thành xu thế tất yếu trên toàn cầu. Tại Việt Nam, với lợi thế đường bờ biển dài, tốc độ gió ổn định và tiềm năng lớn, phát triển điện gió bền vững đang […]
Trong bối cảnh chuyển dịch năng lượng và phát triển điện gió ngày càng mạnh mẽ, đo gió và đánh giá tài nguyên gió được xem là bước quan trọng bậc nhất, quyết định trực tiếp đến hiệu quả kỹ thuật, tài chính và khả năng thành công của dự án. Một dự án điện […]
Trong nuôi tôm hiện đại, đặc biệt là các mô hình thâm canh và siêu thâm canh, oxy hòa tan (DO – Dissolved Oxygen) được xem là yếu tố môi trường quan trọng bậc nhất, ảnh hưởng trực tiếp đến sức khỏe, tốc độ tăng trưởng và tỷ lệ sống của tôm. Thực tế cho […]
Hiện nay, nuôi tôm ngày càng chuyển dịch sang mô hình thâm canh và siêu thâm canh, môi trường ao nuôi trở thành yếu tố quyết định trực tiếp đến tỷ lệ sống, tốc độ tăng trưởng và hiệu quả kinh tế. Tuy nhiên, môi trường ao tôm lại luôn biến động liên tục theo […]
Giá điện ngày càng biến động, áp lực giảm phát thải gia tăng và yêu cầu phát triển bền vững trở thành tiêu chí bắt buộc, đầu tư điện mặt trời đang nổi lên như một giải pháp chiến lược cho cả doanh nghiệp lẫn hộ gia đình. Không chỉ mang lại lợi ích kinh […]
Ngành thủy sản đang chịu nhiều áp lực từ giá điện tăng, chi phí thức ăn leo thang, rủi ro dịch bệnh và yêu cầu ngày càng cao từ thị trường xuất khẩu, bài toán tối ưu chi phí nuôi tôm trở thành mối quan tâm hàng đầu của cả hộ nuôi lẫn doanh nghiệp […]
Trong những năm gần đây, nuôi trồng tôm công nghệ cao đã và đang trở thành xu hướng tất yếu nhằm đáp ứng nhu cầu thị trường xuất khẩu ngày càng khắt khe. Tuy nhiên, song song với cơ hội là hàng loạt rủi ro trong nuôi tôm: biến động môi trường, dịch bệnh, chi […]
Trong bối cảnh biến đổi khí hậu diễn biến phức tạp, chi phí đầu vào ngày càng tăng và yêu cầu khắt khe từ thị trường xuất khẩu, ngành nuôi trồng thủy sản đang đứng trước bài toán đổi mới toàn diện. Trong đó, nuôi tôm công nghệ cao được xem là hướng đi chiến […]
Trong kỷ nguyên của tăng trưởng xanh, năng lượng tái tạo không còn là một khái niệm xa lạ mà dần trở thành xương sống của nền kinh tế toàn cầu. Tuy nhiên, khi bước sang năm 2026, bài toán của các chủ đầu tư đã thay đổi: Không chỉ là lắp đặt bao nhiêu […]
Trong bối cảnh ngành thủy sản Việt Nam đang chịu nhiều tác động từ biến đổi khí hậu, chi phí đầu vào tăng cao và thị trường tiêu thụ biến động, việc tìm kiếm giải pháp nuôi tôm bền vững trở thành yêu cầu cấp thiết. Nuôi tôm không còn chỉ hướng đến sản lượng, […]
Việc kiểm soát nước dằn tàu không còn là vấn đề tự nguyện mà đã trở thành yêu cầu pháp lý nghiêm ngặt trên toàn cầu. Đối với các chủ tàu và đơn vị vận hành, việc nắm vững tiêu chuẩn xả thải nước dằn tàu là yếu tố sống còn để tránh các khoản […]